1. Task: Build a Pagination System with SQL Query Optimization

Objective: Implement a dynamic pagination system for a large dataset (e.g., 100,000+

records).

e Details:

@)
@)

o

Skills tested:

Assume a products table with columns id, name, price, category id.
Retrieve and display products with pagination, showing 20 products per page.
Optimize the query to ensure the page loads fast even with a large number of
records.

Implement a search filter to narrow down products based on category and
price range.

Include navigation links (Previous, Next, Page numbers) for easy page
navigation.

e Complex SQL queries with nTm1T and orrseT for pagination.

e Query optimization techniques (e.g., indexing, efficient pagination).
« Handling large datasets and performance tuning.

e Dynamic search and filtering.

2. Task: Create a Multi-Step Form with Data Persistence

Objective: Build a multi-step form where data is saved and carried over across multiple

steps.

e Details:

o

Skills tested:

Create a form that has multiple steps (e.g., Step 1: Personal Details, Step 2:
Address, Step 3: Payment Details).

Use PHP to store the form data across steps using sessions or database.
Ensure that the form is not submitted until all steps are completed.

Validate form data at each step and show appropriate error messages for
missing or incorrect data.

After all steps are completed, display the summary of the data entered before
final submission.

Managing session or temporary data storage.
Complex form validation and persistence.
Multi-step form creation.

Session handling or temporary database usage.

3. Task: Create a Secure File Upload System



Objective: Build a file upload system that ensures secure file handling.

e Details:

o Allow users to upload files (images, documents, etc.) via a form.

o Implement validation to ensure the uploaded file is of a safe type (e.g., JPEG,
PNG, PDF).

o Ensure the file name is sanitized and renamed to prevent filename conflicts or
malicious file names.
Limit the file size to 5SMB.
Store the file in a directory, ensuring that it is not accessible directly (e.g., use
.htaccess to block direct access).

o Implement error handling for common issues like invalid file type, size, and
permission issues.

Skills tested:

e Advanced file handling in PHP (s_rILES).

« File security and validation.

o Preventing malicious file uploads and overwriting issues.
e Using .htaccess or other methods to restrict file access.

4. Task: Implement a Simple Content Management System (CMS)
Objective: Build a basic CMS that allows users to add, edit, and delete blog posts.

e Details:
o Implement a posts table with columns id, title, content, created at.
o Create a simple admin interface where an authenticated user can:
= Add new blog posts.
= Edit existing posts.
= Delete posts.
Use PHP sessions to manage user authentication (with login functionality).
Implement basic text sanitization (e.g., strip tags()) to prevent XSS
attacks.
o Use prepared statements to prevent SQL injection.

Skills tested:

o CRUD operations (Create, Read, Update, Delete).

e User authentication and session management.

e Security (SQL injection prevention, XSS prevention).
e Designing a basic CMS-like structure.

5. Task: Build a Simple RESTful API for Managing Users



Objective: Create a RESTful API that allows clients to interact with user data.

e Details:
o Create a users table with fields id, name, email, password.
o Implement the following API endpoints:
= GET /api/users: Fetch all users.
= GET /api/users/{id}: Fetch asingle user by ID.
= POST /api/users: Create a new user (with validation for name, email
format, and password strength).
= PUT /api/users/{id}: Update a user by ID.
= DELETE /api/users/{id}: Delete a user by ID.
Return responses in JSON format.
Implement basic error handling and validation (e.g., 404 Not Found, 400 Bad
Request).
o Implement authorization using a simple API token (e.g., check for a valid
token before allowing access).

Skills tested:

o RESTful API design and implementation.

e Working with JSON responses and HTTP methods (GET, POST, PUT, DELETE).
o User authentication and authorization using tokens.

e Error handling in API responses.

e Using prepared statements to prevent SQL injection.

6. Task: Implement a Simple Chat System with PHP and Sessions
Objective: Build a basic chat system where users can send and receive messages in real-time.

e Details:

o Create a messages table with columns id, user id, message, created at.

o Implement a form where users can enter their name (to identify themselves in
the chat).
Use PHP sessions to store the user’s name.
Allow users to send messages which are stored in the database.
Implement a system to display the latest messages from the database in real-
time.

o Use AJAX (JavaScript) to fetch and display new messages without refreshing
the page.

Skills tested:

e Working with sessions for user identification.
« Real-time data display using AJAX.

o Database interaction (CRUD operations).

« Basic chat system implementation.



7. Task: Implement an Authentication System with Password Reset

Objective: Implement a user authentication system with the ability to reset passwords.

e Details:

o

Skills tested:

Create a users table with columns id, email, password, reset_token,
reset token expiry.
Allow users to register with their email and password (use password hash ()
for secure password storage).
Allow users to log in using their email and password (use
password_verify()).
Implement a password reset feature:
= The user submits their email.
= Send a reset token to their email with a link to reset their password.
= The token should expire after 1 hour.
= Allow users to reset their password if the token is valid and not
expired.

e Secure password handling (password hash () and password verify()).
e Implementing a password reset flow.

e Sending emails via PHP (without using external libraries).

o Token-based authentication and expiration handling.

8. Task: Build a Pagination System with Dynamic Filtering

Objective: Implement a complex pagination system that supports filtering and sorting.

e Details:

O O O O O

Skills tested:

Create a products table with id, name, category, price, created at.
Retrieve and display products with pagination, showing 10 products per page.
Allow users to filter products by category and price range.

Allow sorting by price (ascending or descending).

Implement SQL query logic to handle pagination, filtering, and sorting in a
single query.

o Complex SQL queries (pagination, filtering, and sorting).
« Efficient data retrieval and presentation.

e User interaction and filtering with form inputs.

« Handling dynamic query parameters in PHP.

9. Task: Build a Custom Error Logging System



Objective: Create an error logging system that captures errors and saves them in a log file.

e Details:
o Write a custom error handler function that logs errors to a file
(error_log. txt).
Include the error message, timestamp, and file/line where the error occurred.
Implement error handling for common PHP errors like £ NOTICE, E WARNING,
and E_ERROR.
o Make sure the log file is rotated after it reaches a certain size (e.g., LMB).

Skills tested:

e Custom error handling in PHP (set error handler()).
e Writing and appending to log files.

o File size management and log rotation.

« Handling different types of PHP errors.

10. Task: Build a Session-Based Shopping Cart System

Objective: Create a shopping cart that allows users to add, update, and remove items using
PHP sessions.

e Details:
o Create a products table with id, name, price, quantity.
Allow users to add products to a shopping cart (stored in $ SEsSTON).
Allow users to update the quantity or remove products from the cart.
Display the cart contents, including the total price.
Implement a checkout system (simple, no payment gateway, just simulating a
successful order).

o O O O

Skills tested:

« Session management for storing cart data.

o Handling form submissions for cart updates.

« Displaying dynamic data and calculating totals.
e Simple checkout flow.



