
1. Task: Build a Pagination System with SQL Query Optimization 

Objective: Implement a dynamic pagination system for a large dataset (e.g., 100,000+ 

records). 

 Details: 

o Assume a products table with columns id, name, price, category_id. 

o Retrieve and display products with pagination, showing 20 products per page. 

o Optimize the query to ensure the page loads fast even with a large number of 

records. 

o Implement a search filter to narrow down products based on category and 

price range. 

o Include navigation links (Previous, Next, Page numbers) for easy page 

navigation. 

Skills tested: 

 Complex SQL queries with LIMIT and OFFSET for pagination. 

 Query optimization techniques (e.g., indexing, efficient pagination). 

 Handling large datasets and performance tuning. 

 Dynamic search and filtering. 

 

2. Task: Create a Multi-Step Form with Data Persistence 

Objective: Build a multi-step form where data is saved and carried over across multiple 

steps. 

 Details: 
o Create a form that has multiple steps (e.g., Step 1: Personal Details, Step 2: 

Address, Step 3: Payment Details). 

o Use PHP to store the form data across steps using sessions or database. 

o Ensure that the form is not submitted until all steps are completed. 

o Validate form data at each step and show appropriate error messages for 

missing or incorrect data. 

o After all steps are completed, display the summary of the data entered before 

final submission. 

Skills tested: 

 Managing session or temporary data storage. 

 Complex form validation and persistence. 

 Multi-step form creation. 

 Session handling or temporary database usage. 

 

3. Task: Create a Secure File Upload System 



Objective: Build a file upload system that ensures secure file handling. 

 Details: 
o Allow users to upload files (images, documents, etc.) via a form. 

o Implement validation to ensure the uploaded file is of a safe type (e.g., JPEG, 

PNG, PDF). 

o Ensure the file name is sanitized and renamed to prevent filename conflicts or 

malicious file names. 

o Limit the file size to 5MB. 

o Store the file in a directory, ensuring that it is not accessible directly (e.g., use 

.htaccess to block direct access). 

o Implement error handling for common issues like invalid file type, size, and 

permission issues. 

Skills tested: 

 Advanced file handling in PHP ($_FILES). 

 File security and validation. 

 Preventing malicious file uploads and overwriting issues. 

 Using .htaccess or other methods to restrict file access. 

 

4. Task: Implement a Simple Content Management System (CMS) 

Objective: Build a basic CMS that allows users to add, edit, and delete blog posts. 

 Details: 

o Implement a posts table with columns id, title, content, created_at. 

o Create a simple admin interface where an authenticated user can: 

 Add new blog posts. 

 Edit existing posts. 

 Delete posts. 

o Use PHP sessions to manage user authentication (with login functionality). 

o Implement basic text sanitization (e.g., strip_tags()) to prevent XSS 

attacks. 

o Use prepared statements to prevent SQL injection. 

Skills tested: 

 CRUD operations (Create, Read, Update, Delete). 

 User authentication and session management. 

 Security (SQL injection prevention, XSS prevention). 

 Designing a basic CMS-like structure. 

 

5. Task: Build a Simple RESTful API for Managing Users 



Objective: Create a RESTful API that allows clients to interact with user data. 

 Details: 

o Create a users table with fields id, name, email, password. 

o Implement the following API endpoints: 

 GET /api/users: Fetch all users. 

 GET /api/users/{id}: Fetch a single user by ID. 

 POST /api/users: Create a new user (with validation for name, email 

format, and password strength). 

 PUT /api/users/{id}: Update a user by ID. 

 DELETE /api/users/{id}: Delete a user by ID. 

o Return responses in JSON format. 

o Implement basic error handling and validation (e.g., 404 Not Found, 400 Bad 

Request). 

o Implement Authorization using a simple API token (e.g., check for a valid 

token before allowing access). 

Skills tested: 

 RESTful API design and implementation. 

 Working with JSON responses and HTTP methods (GET, POST, PUT, DELETE). 

 User authentication and authorization using tokens. 

 Error handling in API responses. 

 Using prepared statements to prevent SQL injection. 

 

6. Task: Implement a Simple Chat System with PHP and Sessions 

Objective: Build a basic chat system where users can send and receive messages in real-time. 

 Details: 

o Create a messages table with columns id, user_id, message, created_at. 

o Implement a form where users can enter their name (to identify themselves in 

the chat). 

o Use PHP sessions to store the user’s name. 

o Allow users to send messages which are stored in the database. 

o Implement a system to display the latest messages from the database in real-

time. 

o Use AJAX (JavaScript) to fetch and display new messages without refreshing 

the page. 

Skills tested: 

 Working with sessions for user identification. 

 Real-time data display using AJAX. 

 Database interaction (CRUD operations). 

 Basic chat system implementation. 

 



7. Task: Implement an Authentication System with Password Reset 

Objective: Implement a user authentication system with the ability to reset passwords. 

 Details: 

o Create a users table with columns id, email, password, reset_token, 

reset_token_expiry. 

o Allow users to register with their email and password (use password_hash() 

for secure password storage). 

o Allow users to log in using their email and password (use 

password_verify()). 

o Implement a password reset feature: 

 The user submits their email. 

 Send a reset token to their email with a link to reset their password. 

 The token should expire after 1 hour. 

 Allow users to reset their password if the token is valid and not 

expired. 

Skills tested: 

 Secure password handling (password_hash() and password_verify()). 

 Implementing a password reset flow. 

 Sending emails via PHP (without using external libraries). 

 Token-based authentication and expiration handling. 

 

8. Task: Build a Pagination System with Dynamic Filtering 

Objective: Implement a complex pagination system that supports filtering and sorting. 

 Details: 

o Create a products table with id, name, category, price, created_at. 

o Retrieve and display products with pagination, showing 10 products per page. 

o Allow users to filter products by category and price range. 

o Allow sorting by price (ascending or descending). 

o Implement SQL query logic to handle pagination, filtering, and sorting in a 

single query. 

Skills tested: 

 Complex SQL queries (pagination, filtering, and sorting). 

 Efficient data retrieval and presentation. 

 User interaction and filtering with form inputs. 

 Handling dynamic query parameters in PHP. 

 

9. Task: Build a Custom Error Logging System 



Objective: Create an error logging system that captures errors and saves them in a log file. 

 Details: 
o Write a custom error handler function that logs errors to a file 

(error_log.txt). 

o Include the error message, timestamp, and file/line where the error occurred. 

o Implement error handling for common PHP errors like E_NOTICE, E_WARNING, 

and E_ERROR. 

o Make sure the log file is rotated after it reaches a certain size (e.g., 1MB). 

Skills tested: 

 Custom error handling in PHP (set_error_handler()). 

 Writing and appending to log files. 

 File size management and log rotation. 

 Handling different types of PHP errors. 

 

10. Task: Build a Session-Based Shopping Cart System 

Objective: Create a shopping cart that allows users to add, update, and remove items using 

PHP sessions. 

 Details: 

o Create a products table with id, name, price, quantity. 

o Allow users to add products to a shopping cart (stored in $_SESSION). 

o Allow users to update the quantity or remove products from the cart. 

o Display the cart contents, including the total price. 

o Implement a checkout system (simple, no payment gateway, just simulating a 

successful order). 

Skills tested: 

 Session management for storing cart data. 

 Handling form submissions for cart updates. 

 Displaying dynamic data and calculating totals. 

 Simple checkout flow. 


